Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 157
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 267(Pt 2): 131513, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608979

RESUMO

Tyrosinase is a copper oxidase enzyme which catalyzes the first two steps in the melanogenesis pathway, L-tyrosine to L-dopa conversion and, then, to o-dopaquinone and dopachrome. Hypopigmentation and, above all, hyperpigmentation issues can be originated depending on their activity. This enzyme also promotes the browning of fruits and vegetables. Therefore, control of their activity by regulators is research topic of great relevance. In this work, we consider the use of inhibitors of monophenolase and diphenolase activities of the enzyme in order to accomplish such control. An experimental design and data analysis which allow the accurate calculation of the degree of inhibition of monophenolase activity (iM) and diphenolase activity (iD) are proposed. The IC50 values (amount of inhibitor that causes 50 % inhibition at a fixed substrate concentration) can be calculated for the two activities and from the values of IC50M (monophenolase) and IC50D(diphenolase). Additionally, the strength and type of inhibition can be deduced from these values. The data analysis from these IC50D values allows to obtain the values of [Formula: see text] or [Formula: see text] , or and [Formula: see text] from the values of IC50M. In all cases, the values of the different must satisfy their relationship with IC50M and IC50D.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Monofenol Mono-Oxigenase/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Concentração Inibidora 50 , Cinética , Oxirredutases/antagonistas & inibidores , Oxirredutases/metabolismo , Humanos
3.
Biochem Pharmacol ; 212: 115574, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37127249

RESUMO

Hyperpigmentation is a common and distressing dermatologic condition. Since tyrosinase (TYR) plays an essential role in melanogenesis, its inhibition is considered a logical approach along with other therapeutic methods to prevent the accumulation of melanin in the skin. Thus, TYR inhibitors are a tempting target as the medicinal and cosmetic active agents of hyperpigmentation disorder. Among TYR inhibitors, hydroquinone is a traditional lightening agent that is commonly used in clinical practice. However, despite good efficacy, prolonged use of hydroquinone is associated with side effects. To overcome these shortcomings, new approaches in targeting TYR and treating hyperpigmentation are desperately requiredessentialneeded. In line with this purpose, several non-hydroquinone lightening agents have been developed and suggested as hydroquinone alternatives. In addition to traditional approaches, nanomedicine and nanotheranostic platforms have been recently proposed in the treatment of hyperpigmentation. In this review, we discuss the available strategies for the management of hyperpigmentation with a focus on TYR inhibition. In addition, alternative treatment options to hydroquinone are discussed. Finally, we present nano-based strategies to improve the therapeutic effect of drugs prescribed to patients with skin disorders.


Assuntos
Hiperpigmentação , Preparações Clareadoras de Pele , Humanos , Hiperpigmentação/tratamento farmacológico , Melaninas/metabolismo , Monofenol Mono-Oxigenase/antagonistas & inibidores , Monofenol Mono-Oxigenase/metabolismo , Pele , Preparações Clareadoras de Pele/uso terapêutico , Preparações Clareadoras de Pele/farmacologia
4.
Plant J ; 113(6): 1330-1347, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658761

RESUMO

The enzyme glutamine synthetase (EC 6.3.1.2) is mainly responsible for the incorporation of inorganic nitrogen into organic molecules in plants. In the present work, a pine (Pinus pinaster) GS1 (PpGS1b.2) gene was identified, showing a high sequence identity with the GS1b.1 gene previously characterized in conifers. Phylogenetic analysis revealed that the presence of PpGS1b.2 is restricted to the genera Pinus and Picea and is not found in other conifers. Gene expression data suggest a putative role of PpGS1b.2 in plant development, similar to other GS1b genes from angiosperms, suggesting evolutionary convergence. The characterization of GS1b.1 and GS1b.2 at the structural, physicochemical, and kinetic levels has shown differences even though they have high sequence homology. GS1b.2 had a lower optimum pH (6 vs. 6.5) and was less thermally stable than GS1b.1. GS1b.2 exhibited positive cooperativity for glutamate and substrate inhibition for ammonium. However, GS1b.1 exhibited substrate inhibition behavior for glutamate and ATP. Alterations in the kinetic characteristics produced by site-directed mutagenesis carried out in this work strongly suggest an implication of amino acids at positions 264 and 267 in the active center of pine GS1b.1 and GS1b.2 being involved in affinity toward ammonium. Therefore, the amino acid differences between GS1b.1 and GS1b.2 would support the functioning of both enzymes to meet distinct plant needs.


Assuntos
Compostos de Amônio , Pinus , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Filogenia , Pinus/genética , Ácido Glutâmico/metabolismo , Compostos de Amônio/metabolismo
6.
Int J Mol Sci ; 23(16)2022 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-36012612

RESUMO

Spanish fir (Abies pinsapo Boiss.) is an endemic, endangered tree that has been scarcely investigated at the molecular level. In this work, the transcriptome of Spanish fir was assembled, providing a large catalog of expressed genes (22,769), within which a high proportion were full-length transcripts (12,545). This resource is valuable for functional genomics studies and genome annotation in this relict conifer species. Two intraspecific variations of A. pinsapo can be found within its largest population at the Sierra de las Nieves National Park: one with standard green needles and another with bluish-green needles. To elucidate the causes of both phenotypes, we studied different physiological and molecular markers and transcriptome profiles in the needles. "Green" trees showed higher electron transport efficiency and enhanced levels of chlorophyll, protein, and total nitrogen in the needles. In contrast, needles from "bluish" trees exhibited higher contents of carotenoids and cellulose. These results agreed with the differential transcriptomic profiles, suggesting an imbalance in the nitrogen status of "bluish" trees. Additionally, gene expression analyses suggested that these differences could be associated with different epigenomic profiles. Taken together, the reported data provide new transcriptome resources and a better understanding of the natural variation in this tree species, which can help improve guidelines for its conservation and the implementation of adaptive management strategies under climatic change.


Assuntos
Abies , Abies/genética , Mudança Climática , Perfilação da Expressão Gênica , Nitrogênio/metabolismo , Transcriptoma/genética , Árvores/genética
7.
Front Plant Sci ; 13: 877960, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665168

RESUMO

Embryogenesis is a complex phase of conifer development involving hundreds of genes, and a proper understanding of this process is critical not only to produce embryos with different applied purposes but also for comparative studies with angiosperms. A global view of transcriptome dynamics during pine somatic and zygotic embryogenesis is currently missing. Here, we present a genome-wide transcriptome analysis of somatic and zygotic embryos at three developmental stages to identify conserved biological processes and gene functions during late embryogenesis. Most of the differences became more significant as the developmental process progressed from early to cotyledonary stages, and a higher number of genes were differentially expressed in somatic than in zygotic embryos. Metabolic pathways substantially affected included those involved in amino acid biosynthesis and utilization, and this difference was already observable at early developmental stages. Overall, this effect was found to be independent of the line (genotype) used to produce the somatic embryos. Additionally, transcription factors differentially expressed in somatic versus zygotic embryos were analyzed. Some potential hub regulatory genes were identified that can provide clues as to what transcription factors are controlling the process and to how the observed differences between somatic and zygotic embryogenesis in conifers could be regulated.

8.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630619

RESUMO

Tyrosinase is the enzyme involved in melanization and is also responsible for the browning of fruits and vegetables. Control of its activity can be carried out using inhibitors, which is interesting in terms of quantitatively understanding the action of these regulators. In the study of the inhibition of the diphenolase activity of tyrosinase, it is intriguing to know the strength and type of inhibition. The strength is indicated by the value of the inhibition constant(s), and the type can be, in a first approximation: competitive, non-competitive, uncompetitive and mixed. In this work, it is proposed to calculate the degree of inhibition (iD), varying the concentration of inhibitor to a fixed concentration of substrate, L-dopa (D). The non-linear regression adjustment of iD with respect to the initial inhibitor concentration [I]0 allows for the calculation of the inhibitor concentration necessary to inhibit the activity by 50%, at a given substrate concentration (IC50), thus avoiding making interpolations between different values of iD. The analytical expression of the IC50, for the different types of inhibition, are related to the apparent inhibition constant (KIapp). Therefore, this parameter can be used: (a) To classify a series of inhibitors of an enzyme by their power. Determining these values at a fixed substrate concentration, the lower IC50, the more potent the inhibitor. (b) Checking an inhibitor for which the type and the inhibition constant have been determined (using the usual methods), must confirm the IC50 value according to the corresponding analytical expression. (c) The type and strength of an inhibitor can be analysed from the study of the variation in iD and IC50 with substrate concentration. The dependence of IC50 on the substrate concentration allows us to distinguish between non-competitive inhibition (iD does not depend on [D]0) and the rest. In the case of competitive inhibition, this dependence of iD on [D]0 leads to an ambiguity between competitive inhibition and type 1 mixed inhibition. This is solved by adjusting the data to the possible equations; in the case of a competitive inhibitor, the calculation of KI1app is carried out from the IC50 expression. The same occurs with uncompetitive inhibition and type 2 mixed inhibition. The representation of iD vs. n, with n=[D]0/KmD, allows us to distinguish between them. A hyperbolic iD vs. n representation that passes through the origin of coordinates is a characteristic of uncompetitive inhibition; the calculation of KI2app is immediate from the IC50 value. In the case of mixed inhibitors, the values of the apparent inhibition constant of meta-tyrosinase (Em) and oxy-tyrosinase (Eox), KI1app and the apparent inhibition constant of metatyrosinase/Dopa complexes (EmD) and oxytyrosinase/Dopa (EoxD), KI2app are obtained from the dependence of iD vs. n, and the results obtained must comply with the IC50 value.


Assuntos
Inibidores Enzimáticos , Monofenol Mono-Oxigenase , Inibidores Enzimáticos/química , Levodopa
9.
Plant J ; 110(4): 946-960, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35199893

RESUMO

Glutamine synthetase (GS) is a key enzyme responsible for the incorporation of inorganic nitrogen in the form of ammonium into the amino acid glutamine. In plants, two groups of functional GS enzymes are found: eubacterial GSIIb (GLN2) and eukaryotic GSIIe (GLN1/GS). Only GLN1/GS genes are found in vascular plants, which suggests that they are involved in the final adaptation of plants to terrestrial life. The present phylogenetic study reclassifies the different GS genes of seed plants into three clusters: GS1a, GS1b and GS2. The presence of genes encoding GS2 has been expanded to Cycadopsida gymnosperms, which suggests the origin of this gene in a common ancestor of Cycadopsida, Ginkgoopsida and angiosperms. GS1a genes have been identified in all gymnosperms, basal angiosperms and some Magnoliidae species. Previous studies in conifers and the gene expression profiles obtained in ginkgo and magnolia in the present work could explain the absence of GS1a in more recent angiosperm species (e.g. monocots and eudicots) as a result of the redundant roles of GS1a and GS2 in photosynthetic cells. Altogether, the results provide a better understanding of the evolution of plant GS isoenzymes and their physiological roles, which is valuable for improving crop nitrogen use efficiency and productivity. This new view of GS evolution in plants, including a new cytosolic GS group (GS1a), has important functional implications in the context of plant metabolism adaptation to global changes.


Assuntos
Glutamato-Amônia Ligase , Traqueófitas , Cycadopsida/genética , Cycadopsida/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Nitrogênio/metabolismo , Filogenia , Traqueófitas/metabolismo
10.
Plant Physiol ; 188(1): 134-150, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34633048

RESUMO

Phenylalanine (Phe) is the precursor of essential secondary products in plants. Here we show that a key, rate-limiting step in Phe biosynthesis, which is catalyzed by arogenate dehydratase, experienced feedback de-regulation during evolution. Enzymes from microorganisms and type-I ADTs from plants are strongly feedback-inhibited by Phe, while type-II isoforms remain active at high levels of Phe. We have found that type-II ADTs are widespread across seed plants and their overproduction resulted in a dramatic accumulation of Phe in planta, reaching levels up to 40 times higher than those observed following the expression of type-I enzymes. Punctual changes in the allosteric binding site of Phe and adjacent region are responsible for the observed relaxed regulation. The phylogeny of plant ADTs evidences that the emergence of type-II isoforms with relaxed regulation occurred at some point in the transition between nonvascular plants and tracheophytes, enabling the massive production of Phe-derived compounds, primarily lignin, a hallmark of vascular plants.


Assuntos
Produtos Agrícolas/genética , Evolução Molecular , Hidroliases/genética , Hidroliases/metabolismo , Fenilalanina/biossíntese , Fenilalanina/genética , Plantas/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Produtos Agrícolas/metabolismo , Cucumis sativus/genética , Cucumis sativus/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Oryza/metabolismo , Phaseolus/genética , Phaseolus/metabolismo , Filogenia , Nicotiana/genética , Nicotiana/metabolismo , Zea mays/genética , Zea mays/metabolismo
11.
Plant Cell Environ ; 45(3): 915-935, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34724238

RESUMO

Ammonium is a prominent source of inorganic nitrogen for plant nutrition, but excessive amounts can be toxic for many species. However, most conifers are tolerant to ammonium, a relevant physiological feature of this ancient evolutionary lineage. For a better understanding of the molecular basis of this trait, ammonium-induced changes in the transcriptome of maritime pine (Pinus pinaster Ait.) root apex have been determined by laser capture microdissection and RNA sequencing. Ammonium promoted changes in the transcriptional profiles of multiple transcription factors, such as SHORT-ROOT, and phytohormone-related transcripts, such as ACO, involved in the development of the root meristem. Nano-PALDI-MSI and transcriptomic analyses showed that the distributions of IAA and CKs were altered in the root apex in response to ammonium nutrition. Taken together, the data suggest that this early response is involved in the increased lateral root branching and principal root growth, which characterize the long-term response to ammonium supply in pine. All these results suggest that ammonium induces changes in the root system architecture through the IAA-CK-ET phytohormone crosstalk and transcriptional regulation.


Assuntos
Compostos de Amônio , Pinus , Compostos de Amônio/metabolismo , Pinus/genética , Pinus/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
12.
Tree Physiol ; 42(1): 175-188, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34296278

RESUMO

Forest trees have access to diverse nitrogenous compounds in the soil such as ammonium, nitrate and amino acids. Recent progress has been made in the identification and characterization of ammonium and nitrate transporters. However, much more limited is our current knowledge of amino acid transport systems despite their relevance to fully understanding nitrogen nutrition in trees. In the present study, we have identified 10 genes encoding putative amino acid permeases of the AAP family in maritime pine (Pinus pinaster Ait.). Four members of this family, PpAAP1, PpAAP2, PpAAP3 and PpAAP4 were phylogenetically related to AtAAP5, involved in arginine transport in Arabidopsis thaliana. One of these genes, PpAAP1, exhibited enhanced expression levels in maritime pine roots when arginine was externally supplied. PpAAP1 was functionally characterized by complementation of a yeast mutant strain defective in the transport of arginine, allowing yeast to take up [14C]-arginine with high affinity. Furthermore, PpAAP1 was able to restore the severely affected root uptake of arginine displayed by AtAAP5 T-DNA mutants. Uptake rates of 15N-labelled arginine were significantly higher in PpAAP1-overexpressing plants when compared to wild-type and AtAAP5 mutant plants. Taken together, our results indicate that PpAAP1 is a high-affinity arginine transporter in maritime pine.


Assuntos
Arabidopsis , Pinus , Sistemas de Transporte de Aminoácidos/genética , Sistemas de Transporte de Aminoácidos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arginina/metabolismo , Nitrogênio/metabolismo , Pinus/genética , Pinus/metabolismo
13.
Front Plant Sci ; 13: 1102044, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618661

RESUMO

Epitranscriptome constitutes a gene expression checkpoint in all living organisms. Nitrogen is an essential element for plant growth and development that influences gene expression at different levels such as epigenome, transcriptome, proteome, and metabolome. Therefore, our hypothesis is that changes in the epitranscriptome may regulate nitrogen metabolism. In this study, epitranscriptomic modifications caused by ammonium nutrition were monitored in maritime pine roots using Oxford Nanopore Technology. Transcriptomic responses mainly affected transcripts involved in nitrogen and carbon metabolism, defense, hormone synthesis/signaling, and translation. Global detection of epitranscriptomic marks was performed to evaluate this posttranscriptional mechanism in un/treated seedlings. Increased N6-methyladenosine (m6A) deposition in the 3'-UTR was observed in response to ammonium, which seems to be correlated with poly(A) lengths and changes in the relative abundance of the corresponding proteins. The results showed that m6A deposition and its dynamics seem to be important regulators of translation under ammonium nutrition. These findings suggest that protein translation is finely regulated through epitranscriptomic marks likely by changes in mRNA poly(A) length, transcript abundance and ribosome protein composition. An integration of multiomics data suggests that the epitranscriptome modulates responses to nutritional, developmental and environmental changes through buffering, filtering, and focusing the final products of gene expression.

14.
Biomolecules ; 11(9)2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34572482

RESUMO

With the purpose to obtain the more useful tyrosinase assay for the monophenolase activity of tyrosinase between the spectrofluorometric and spectrophotometric continuous assays, simulated assays were made by means of numerical integration of the equations that characterize the mechanism of monophenolase activity. These assays showed that the rate of disappearance of monophenol (VssM,M) is equal to the rate of accumulation of dopachrome (VssM,DC) or to the rate of accumulation of its oxidized adduct, originated by the nucleophilic attack on o-quinone by a nucleophile such as 3-methyl-2-benzothiazolinone (MBTH), (VssM, A-ox), despite the existence of coupled reactions. It is shown that the spectrophotometric methods that use MBTH are more useful, as they do not have the restrictions of the L-tyrosine disappearance measurement method, of working at pH = 8 and not having a linear response from 100 µM of L-tyrosine. It is possible to obtain low LODM (limit of detection of the monophenolase activity) values with spectrophotometric methods. The spectrofluorimetric methods had a lower LODM than spectrophotometric methods. In the case of 4-hydroxyphenil-propionic acid, the LODM obtained by us was 0.25 U/mL. Considering the relative sensitivities of 4-hydroxyanisole, compared with 4-hydroxyphenil-propionic acid, LODM values like those obtained by fluorescent methods would be expected.


Assuntos
Ensaios Enzimáticos/métodos , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Agaricales/enzimologia , Simulação por Computador , Cinética , Espectrometria de Fluorescência , Espectrofotometria , Tirosina/metabolismo
15.
J Food Biochem ; : e13803, 2021 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-34219246

RESUMO

The oxidation of oleuropein and 3-hydroxytyrosol by oxidases laccase, tyrosinase, and peroxidase has been studied. The use of a spectrophotometric method and another spectrophotometric chronometric method has made it possible to determine the kinetic parameters Vmax and KM for each enzyme. The highest binding affinity was shown by laccase. The antioxidant capacities of these two molecules have been characterized, finding a very similar primary antioxidant capacity between them. Docking studies revealed the optimal binding position, which was the same for the two molecules and was a catalytically active position. PRACTICAL APPLICATIONS: One of the biggest environmental problems in the food industry comes from olive oil mill wastewater with a quantity of approximately 30 million tons per year worldwide. In addition, olive pomace, the solid residue obtained from the olive oil production, is rich in hydroxytyrosol and oleuropein and the action of enzymatic oxidases can give rise to products in their reactions that can lead to polymerization. This polymerization can have beneficial effects because it can increase the antioxidant capacity with potential application on new functional foods or as feed ingredients. Tyrosinase, peroxidase, and laccase are the enzymes degrading these important polyphenols. The application of a spectrophotometric method for laccase and a chronometric method, for tyrosinase and peroxidase, allowed us to obtain the kinetic information of their reactions on hydroxytyrosol and oleuropein. The kinetic information obtained could advance in the understanding of the mechanism of these important industrial enzymes.

17.
Biotechnol Appl Biochem ; 68(4): 823-831, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32776353

RESUMO

Tyrosinase starts melanogenesis and determines its course, catalyzing the oxidation by molecular oxygen of tyrosine to dopa, and that of dopa to dopaquinone. Then, nonenzymatic coupling reactions lead to dopachrome, which evolves toward melanin. Recently, it has been reported that d-tyrosine acts as tyrosinase inhibitor and depigmenting agent. The action of tyrosinase on the enantiomers of tyrosine (l-tyrosine and d-tyrosine) and dopa (l-dopa and d-dopa) was studied for the first time focusing on quantitative transient phase kinetics. Post-steady-state transient phase studies revealed that l-dopachrome is formed more rapidly than d-dopachrome. This is due to the lower values of Michaelis constants for l-enantiomers than for d-enantiomers, although the maximum rates are equal for both enantiomers. A deeper analysis of the inter-steady-state transient phase of monophenols demonstrated that the enantiomer d-tyrosine causes a longer lag period and a lower steady-state rate, than l-tyrosine at the same concentration. Therefore, d-melanogenesis from d-tyrosine occurs more slowly than does l-melanogenesis from l-tyrosine, which suggests the apparent inhibition of melanin biosynthesis by d-tyrosine. As conclusion, d-tyrosine acts as a real substrate of tyrosinase, with low catalytic efficiency and, therefore, delays the formation of d-melanin.


Assuntos
Di-Hidroxifenilalanina/química , Proteínas Fúngicas/química , Melaninas/síntese química , Monofenol Mono-Oxigenase/química , Tirosina/química , Catálise , Cinética , Melaninas/química , Oxirredução , Estereoisomerismo
18.
Plants (Basel) ; 9(10)2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32992504

RESUMO

The amino acids arginine and ornithine are the precursors of a wide range of nitrogenous compounds in all living organisms. The metabolic conversion of ornithine into arginine is catalyzed by the sequential activities of the enzymes ornithine transcarbamylase (OTC), argininosuccinate synthetase (ASSY) and argininosuccinate lyase (ASL). Because of their roles in the urea cycle, these enzymes have been purified and extensively studied in a variety of animal models. However, the available information about their molecular characteristics, kinetic and regulatory properties is relatively limited in plants. In conifers, arginine plays a crucial role as a main constituent of N-rich storage proteins in seeds and serves as the main source of nitrogen for the germinating embryo. In this work, recombinant PpOTC, PpASSY and PpASL enzymes from maritime pine (Pinus pinaster Ait.) were produced in Escherichia coli to enable study of their molecular and kinetics properties. The results reported here provide a molecular basis for the regulation of arginine and ornithine metabolism at the enzymatic level, suggesting that the reaction catalyzed by OTC is a regulatory target in the homeostasis of ornithine pools that can be either used for the biosynthesis of arginine in plastids or other nitrogenous compounds in the cytosol.

19.
Front Plant Sci ; 11: 823, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32612622

RESUMO

High levels of nitrogen are stored as arginine during the last stages of seed formation in maritime pine (Pinus pinaster Aiton). The protein sensor PII regulates the feedback inhibition of arginine biosynthesis through interaction with the key enzyme N-acetylglutamate kinase (NAGK). In this study, the structural and functional characteristics of PII have been investigated in maritime pine to get insights into the regulation of arginine metabolism. Two different forms of PII have been identified, PpPIIa and PpPIIb, which differ in their amino acid sequence and most likely correspond to splicing variants of a single gene in the pine genome. Two PII variants are also present in other pine species but not in other conifers such as spruces. PpPIIa and PpPIIb are trimeric proteins for which structural modeling predicts similar tridimensional protein core structures. Both are located in the chloroplast, where the PII-target enzyme PpNAGK is also found. PpPIIa, PpPIIb, and PpNAGK have been recombinantly produced to investigate the formation of NAGK-PII complexes. The interaction of PpPIIa/PpPIIb and PpNAGK may be enhanced by glutamine and contribute to relieve the feedback inhibition of PpNAGK by arginine. Expression analysis of PpPII genes revealed that PpIIa transcripts were predominant during embryogenesis and germination. The potential roles of PpPIIa and PpPIIb in the regulation of arginine metabolism of maritime pine are discussed.

20.
Int J Biol Macromol ; 164: 1256-1266, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32721460

RESUMO

The pathways of melanization and sclerotization of the cuticle in insects are carried out by the action of laccases on dopamine and related compounds. In this work, the laccase action of Trametes versicolor (TvL) on catecholamines and related compounds has been kinetically characterized. Among them, dopamine, l-dopa, l-epinephrine, l-norepinephrine, dl-isoprenaline, l-isoprenaline, dl-α-methyldopa, l-α-methyldopa and l-dopa methylester. A chronometric method has been used, which is based on measuring the lag period necessary to consume a small amount of ascorbic acid, added to the reaction medium. The use of TvL has allowed docking studies of these molecules to be carried out at the active site of this enzyme. The hydrogen bridge interaction between the hydroxyl oxygen at C-4 with His-458, and with the acid group of Asp-206, would make it possible to transfer the electron to the T1 Cu-(II) copper centre of the enzyme. Furthermore, Phe-265 would facilitate the adaptation of the substrate to the enzyme through Π-Π interactions. To kinetically characterize these compounds, we need to take into consideration that, excluding l-dopa, l-α-methyldopa and dl-α-methyldopa, all compounds are in hydrochloride form. Because of this, first we need to kinetically characterize the inhibition by chloride and, after that, calculate the kinetic parameters KM and VmaxS. From the kinetic data obtained, it appears that the best substrate is dopamine. The presence of an isopropyl group bound to nitrogen (isoprenaline) makes it especially difficult to catalyse. The formation of the ester (l-dopa methyl ester) practically does not affect catalysis. The addition of a methyl group (α-methyl dopa) increases the rate but decreases the affinity for catalysis. l-Epinephrine and l-norepinephrine have an affinity similar to isoprenaline, but faster catalysis, probably due to the greater nucleophilic power of their phenolic hydroxyl.


Assuntos
Catecolaminas/química , Dopamina/química , Lacase/química , Oxigênio/química , Animais , Isótopos de Carbono , Catálise , Domínio Catalítico , Simulação por Computador , Concentração de Íons de Hidrogênio , Radical Hidroxila , Insetos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Acoplamento Molecular , Dinâmica não Linear , Fenóis/química , Polyporaceae/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...